Integrated Automotive Audio Management

자동차 / 상호작용 오디오

Based on advanced audio management solutions, like Wwise Automotive, Continental can now integrate the control over all sound sources in a vehicle: The Functional Audio solution manages all data sources that have potential relevance for driver information and uses that data for a tailored sound design. As a true automotive system Functional Audio combines high fidelity with the functional level of an acoustic human machine interface channel plus the necessary automotive system reliability.

In a vehicle sound has many levels: While the first thing that may come to a driver’s mind is the audio quality of music and radio programs, there is also the added level of information that may directly relate to the driving task. Currently this human-machine interface level of sound is treated separately, which results in a situation where different types of sound are generated and handled by several discrete components or electronic control units in the vehicle. Examples are basic vehicle sounds like the turn signal, obviously the radio/USB, incoming messages and telephone calls, infotainment applications and of course important driver information like navigation instructions, and audible alerts coming from, e.g., blind spot assist or parking aide systems.

Using sound to communicate information to the driver is advocated by the good ergonomics of sound in the vehicle: Not only is sound a very fast sensory channel supporting 3D orientation, it is also a way of limiting the dominance of the visual channel. Ever more dense traffic and additional visual information can quickly lead to a sensory overload. In recent years, the automotive industry has therefore improved the user-friendly presentation of information. Until quite recently, the focus has been on visual displays. However, auditory messages make a valuable contribution to a multimodal approach – a term that denotes a human-machine interface or interaction concept, which uses different sensory channels (visual, acoustic, haptic) for different types of message and levels of urgency.

On top of avoiding an overload on a single channel, this holistic concept facilitates a stepped escalation which serves to attract and direct the driver’s attention according to the driving situation and instantaneous driver workload. This is one key characteristic of the Functional Audio all-software solution: The “sonification” of data [1] helps to increase the level of driving safety by tailoring sound design to a specific situation and requirement. 

Holistic approach to sound

A holistic interaction concept will also be required as an answer to global automotive trends such as automated driving, electrification or vehicle fleets for smart cities. New types of information are required to make the transition from automated mode to manual mode as seamless as possible, for example. In an electric vehicle sound can be used differently thanks to the lack of engine noise. The many discrete sound sources in present cars make it difficult to prioritize sounds outside the bounds of their own domains. Sound remains largely subject to specific functions and it is not possible to manage audible messages at a superordinate level. New vehicle architectures, however, are now making it necessary for all sources to be integrated. The Functional Audio software provides the technical solution for mastering this challenge.

 

Picture1

Figure 1: Central audio management for head units or amplifiers offers new functions and freedom in design.

Functional Audio (Figure 1) implements sound design functions that were previously impossible in the automotive sector. With the aid of a central audio management, a driver’s attention can be drawn to a specific situation. For example, if another vehicle approaches from the right, an audible warning signal from the right-hand side of the vehicle intuitively shifts the driver’s focus of attention to where it needs to be – while other sounds are faded out. Functional Audio is a solution that builds on the Integrated Interior Platform (IIP) from Continental (Figure 2):  

Picture2

Figure 2: Functional Audio builds on Continental´s Integrated Interior Platform.

The IIP and its architecture combine the functions of infotainment and the instrument cluster within shared hardware. Hypervisor technology ensures that safety-relevant systems are capable of running at all times, separated from the infotainment system. The software architecture guarantees a smooth and non-domain-specific flow of information appropriate to the situation for all modes. Functional Audio uses this to process all information and manage the output of all audio sources. The software also makes it possible to customize sounds in the vehicle and to prioritize or intensify existing noises. For example the audible alert can be more intensive when a person walks behind the vehicle than an alert indicating an inanimate object. 

Sonification of data from many sources

Functional Audio can be connected to advanced driver assistance systems or cloud applications, such as the eHorizon from Continental. The system creates or modifies different sounds based on the data received. For instance, sonification can be applied to collision warning systems [2]. If the driver has already noticed a hazard, an early warning is not necessary. However, if the hazard is not within the driver’s line of sight, an early warning is issued to enable suitable countermeasures to be taken. Camera-based driver monitoring helps to evaluate the line of sight and thus the level of awareness. The system processes the data for a special sound design and reproduces it in the form of an auditory display [3].

Thanks to the spatial audio output, the sound source can be placed almost anywhere around the vehicle and be played from any speaker – either alone or over other sounds – to attract the attention of the driver. The driver can then narrow down the direction of the audible signal to an accuracy of up to eight angular degrees. Converting data into sound can help drivers during navigation (Figure 3).

Picture 3

Figure 3: Live data connection enables a sonification of the navigation.

If the vehicle is approaching a suggested turn-off point, an intensifying sound alerts the driver. Thus, the driver is no longer compelled to read the distance indicator on the display or to estimate distances.

Other driving situations also illustrate the significance of the modified audio output. For instance, the system can enhance the sound of the turn signal with additional information. If the driver wishes to overtake and activates the turn signal to change the lane, the system takes on the role of a blind spot assistant. An audible warning will overlay the sound of the turn signal, if a car approaches from behind. The sound of the turn signal returns to normal only when the relevant lane is clear. Collision warnings follow a similar principle (Figure 4).

Picture4

Figure 4: Collision warning with spatial audio alerts to inform the driver in time. 

The system informs and warns drivers audibly of obstacles and hazards. The connected vehicle’s live data connection means that the system can warn of a potential collision even if the hazard is after the next bend or behind the crest of a hill. 

Plug-in-based system

Sound algorithms from third-party providers, such as text to speech engines or 3D sound enhancements from Auro, can be used flexibly as plug-ins in Functional Audio. All functions and settings can be configured using the Wwise sound design tool with its graphical user interface. Developers can simulate different sound designs and settings in advance and test, change and save them in the vehicle in real time. Increased efficiency means that the respective sound effects take less time to develop.

The central audio management system includes all the conventional and familiar functions. For example, it can stream content from mobile devices and prioritize sound playback. This does not require any modifications to the hardware, which means that the software can run on the Integrated Interior Platform, for instance. The carmakers can decide which sound they wish to be played in which situation and how the various sounds are to be prioritized. They can provide their own sounds or have the sounds developed externally. Continental is taking the list of requirements and converting it into a reliable system.

Although various functions benefit from high-quality, multi-channel speaker systems, fundamentally, Functional Audio works if a vehicle has two speakers – meaning that it can be used in all vehicle classes.  By the secure connectivity of the vehicle to the cloud it is possible to update or modify the sound design. This makes it possible for drivers to install new functions using apps or even enables to download their customized sound design into their current vehicle in a car fleet.

 

Literature
[1] Thomas Hermann, Andy Hunt: The Sonification Handbook, first edition, 2011, Logos Verlag, page 10.
[2] Jaka Sodnik, Sašo Tomažič: Spatial Auditory Human-Computer Interfaces, first edition, 2015, Springer Verlag, page 62.
[3] P. Bazilinskyy: Auditory Displays for Automated Driving, 2017. www.researchgate.net/publication/312940263_Auditory_displays_for_automated_driving
[4] Continental: Integrated Interior Platform, 2017. Link: https://www.continental-automotive.com/en-gl/Passenger-Cars/Interior/Display-Systems/Integrated-Interior-Platform.
[5] Continental: 3D-sound improves driver assistance systems in cars. Link: https://www.continental-corporation.com/en/press/press-releases/2018-02-26-predictive-connectivity-122554.

Konrad Hilarius & Jörg Witthaus

Continental Automotive GmbH

Konrad Hilarius & Jörg Witthaus

Continental Automotive GmbH

댓글

oliver smith

July 26, 2019 at 10:57 am

Great writing skills you have. Keep sharing such posts in future too.

harry bisht

July 29, 2019 at 02:31 am

I appreciate those articles which are informative. You shared a very informative post. I wish you write more and keep writing. https://www.kanhaijewels.com/category/imitation-jewellery

댓글 달기

이메일 주소는 공개되지 않습니다.

다른 글

게임 음악은 단순히 그냥 음악이 아니다: 제 1부

게임 음악이란 무엇일까요? 상호작용 음악이란 무엇일까요? 이 질문에 답하기란 생각만큼 그리 간단하지 않습니다. 올리비에 더리비에르(Olivier Derivière)는 이 글을 통해...

20.10.2021 - 작성자: 올리비에 더리비에르 (OLIVIER DERIVIÈRE)

NFL 킥오프 2020: 텅 빈 경기장에 관중 사운드 시스템 도입

실제 팀과 경기장별 오디오 파일을 사용하는 동적 시스템 이 글은 Sports Video Group News(스포츠 비디오 그룹 뉴스)에 게시된 원본 글을 가져온 것입니다. 이번...

1.12.2021 - 작성자: 댄 대일리 (Dan Daley)

Impacter의 교차 합성 변형음 시각화하기

Impacter 플러그인 블로그 시리즈에 다시 오신 것을 환영합니다. 이전 두 블로그에서는 플러그인의 물리적 매개 변수와 이 매개 변수가 게임의 물리 시스템과 잘 통합될 수 있는...

2.2.2022 - 작성자: 라이언 돈 (RYAN DONE)

zerocrossing의 SpectralMultiEffect

SpectralMultiEffect는 Wwise용 플러그인입니다. 이 플러그인은 게임에서 상호작용성을 향상시키기 위해 제작되었으며 사운드 디자이너가 실험해보고 오디오를 변화시킬 수...

9.2.2022 - 작성자: 하비에르 아르시니에가스(Javier Arciniegas)

Strata, Wwise, Unreal을 결합해 몰입형 게임 환경 만들기

이 블로그에서는 Wwise가 통합된 Unreal Engine 5 프로젝트의 멀티트랙 컬렉션 중 하나를 사용하여 Strata를 이용한 상호작용 디자인 과정을 살펴보겠습니다.이...

16.5.2023 - 작성자: 체이스 스틸(Chase Steele)

상호작용 음악: '여러분이 직접 선택하는 모험' 스타일의 발라드

2018년 크라우드 펀딩 캠페인을 성공적으로 마친 inXile Entertainment(인엑사일 엔터테인먼트)는 '웨이스트 랜드 3(Wasteland 3)' 게임의 본격적인 제작에...

23.5.2023 - 작성자: Alexander Brandon (알렉산더 브랜드)

다른 글

게임 음악은 단순히 그냥 음악이 아니다: 제 1부

게임 음악이란 무엇일까요? 상호작용 음악이란 무엇일까요? 이 질문에 답하기란 생각만큼 그리 간단하지 않습니다. 올리비에 더리비에르(Olivier Derivière)는 이 글을 통해...

NFL 킥오프 2020: 텅 빈 경기장에 관중 사운드 시스템 도입

실제 팀과 경기장별 오디오 파일을 사용하는 동적 시스템 이 글은 Sports Video Group News(스포츠 비디오 그룹 뉴스)에 게시된 원본 글을 가져온 것입니다. 이번...

Impacter의 교차 합성 변형음 시각화하기

Impacter 플러그인 블로그 시리즈에 다시 오신 것을 환영합니다. 이전 두 블로그에서는 플러그인의 물리적 매개 변수와 이 매개 변수가 게임의 물리 시스템과 잘 통합될 수 있는...